« Home

MIT Profession Education: Designing Efficient Deep Learning Systems

Wednesday, March 27, 2019, 4:30 PM - 12:30 AM

Deep learning is widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, robotics, etc. While deep learning delivers state-of-the-art accuracy on many AI tasks, it requires high computational complexity. Accordingly, designing efficient hardware systems to support deep learning is an important step towards enabling its wide deployment, particularly for embedded applications such as mobile, Internet of Things (IOT), and drones.

This course aims to provide a comprehensive tutorial and survey about the recent advances towards enabling the efficient processing of deep learning. Specifically, it will provide an overview of deep learning, discuss various hardware platforms and architectures that support deep learning, and highlight key trends in recent efficient processing techniques that reduce the cost of computation for deep learning either solely via hardware design changes or via joint hardware design and network algorithm changes. It will also summarize various development resources that can enable researchers and practitioners to quickly get started on deep learning design, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of deep learning hardware designs, optionally including algorithmic co-design, being proposed in academia and industry.

This course meets March 27-28, 2019 fro 9:30am-5:30pm at Samsung Research America in Mountain View, California. Course fee is $2,500. Register now to secure your spot.

Improve this event listing


665 Clyde Ave
Mountain View, CA 94043

View Map | Get Directions

More Event Ideas

Powered by Datasphere

Event data provided by Eventful

Free Coupons in Add Your Coupon to LocalSaver


What can we do for you?

Thank you for your input. Please fill out the form below and provide as much information as possible about updates to this event or venue.